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Abstract In this work we present a suitable computational tool to deal with large
matrices and solve systems of non-linear equations. This technique is applied to a
very interesting problem: the detection and flux estimation of point sources in Cos-
mic Microwave Background (CMB) maps, which allows a good determination of
CMB primordial fluctuations and leads to a better knowledge of the chemistry at the
early stages of the Universe. The method uses previous information about the statis-
tical properties of the sources, so that this knowledge is incorporated in a Bayesian
scheme. Simulations show that our approach allows the detection of more sources than
previous non-Bayesian techniques, with a small computation time.
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1 Introduction

The Cosmic Microwave Background (CMB) is a diffuse radiation which started to
propagate freely in the Early Universe, about 380,000 years after the Big Bang. The
CMB is thus a fossil radiation which carries very important information about the
fundamental properties of the Universe and, in particular, about the chemistry of
the Early Universe. Since its discovery in 1964 [13], the CMB has been detected and
surveyed by instruments aboard balloons and satellites, such as the NASA satellites
COBE in 1992 [15] and WMAP in 2003 [16].

The ESA satellite Planck was launched in 2009 and has been measuring the CMB
fluctuations with unprecedented accuracy, resolution and frequency coverage. The first
data obtained by Planck were published in 2011 [5].

There has been a great interest (see [7,11,14]) in studying the effect of primordial
chemistry on the CMB fluctuations. Line absorption, photoionozation and photodis-
sociation leave their imprint on the CMB power spectrum. Determining with great
accuracy the CMB fluctuations is very important to estimate the cosmological param-
eters and, from the point of view of chemistry, to put constraints on the proportions of
different molecules in the Early Universe. Thereby, the chemistry at the early stages
of the Universe can be studied through accurate knowledge of CMB fluctuations.

In order to extract all the relevant information from the CMB data, one must remove
the contamination produced by extragalactic sources, e.g. galaxies that also emit micro-
wave radiation which has a non-cosmological origin. Several techniques: matched
filters, wavelets, etc. have been proposed in the literature (see [9] and [10] for detailed
reviews) to deal with the detection problem.

Recently, Bayesian methods have been used to increase the number of detected
sources with a low percentage of spurious detections [3,4]. The advantage of these
Bayesian techniques is that they incorporate statistical information about the flux dis-
tribution of the sources and their number and positions. We will put forward the method
proposed in [3] in Sect. 2, this method requires the handling of large matrices, at least
when large patches of the sky are studied, as is the case for the data collected by the
Planck instruments, and the solution of non-linear systems. In Sect. 3, the computa-
tional approach is presented based on the methodology exhibited in [2], which allows
us to perform the calculations in a very efficient way and with a small computation
time. In Sect. 4, the approach is tested with simulations resembling the observational
data collected by the Low Frequency Instrument (LFI) of the Planck satellite. We
show that the Bayesian technique, with a suitable mathematical approach and high
performance implementations, compares favorably with the classical model. Finally,
the main conclusions are drawn in Sect. 5.

2 Description of the problem

In a region of the sky, we assume to have an unknown number of point-like sources,
whose emission is mixed with that of the CMB, f (x, y). A model for the total emission
as function of the position (x, y) is given by
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d̃(x, y) = f (x, y) +
n∑

α=1

aαδ(x − xα, y − yα) (1)

where δ(x, y) is the 2D Dirac delta function, the pairs are the locations of the point
sources in our region of the celestial sphere, and aα are their fluxes. We observe this
radiation through an instrument, with beam pattern b(x, y), and a sensor that adds a
random noise n(x, y) to the signal measured.

Therefore, the output of our instrument is:

d(x, y) =
n∑

α=1

aαb(x − xα, y − yα) + ( f ∗ b)(x, y) + n(x, y) (2)

where the point sources and the CMB have been convolved with the beam. In our
application, we are interested in extracting the locations and the fluxes of the point
sources and consider the rest of the signal as just a disturbance superimposed to the
useful signal. If c(x, y) is the signal which does not come from the point sources,
model (2) becomes

d(x, y) =
n∑

α=1

aαb(x − xα, y − yα) + c(x, y). (3)

If our data set is a discrete map of N pixels, the above equation can easily be
rewritten in vector form, by letting d be the lexicographically ordered version of the
discrete map d(x, y), a be the n-vector containing the positive source intensities aα, c
the lexicographically ordered version of the discrete map, c(x, y), and φ be an N × n
matrix whose columns are the lexicographically ordered versions of n replicas of the
map b(x, y), each shifted on one of the source locations. Equation (3) thus becomes

d = φa + c. (4)

Looking at Eqs. (3) and (4), we see that our unknowns are the number n, the list
of locations (xα, yα), with α = 1, . . . , n and the vector a. It is apparent that, once n
and (xα, yα) are known, matrix φ is perfectly determined. Let us then denote the list
of source locations by the n × 2 matrix R, containing all their coordinates.

If we want to adopt a Bayesian approach, we must write the posterior probability
density of our unknowns. According to Bayes theorem, this posterior probability can
be written as

p(n, R, a|d) ∝ p(d|n, R, a)p(n, R, a) (5)

where p(d|n, R, a) is the likelihood function, derived from our data model.
For the CMB plus noise we can assume that c is a Gaussian random field with zero

mean and known covariance ξ . Thus, the likelihood function is

p(d|n, R, a) ∝ exp
(
−(d − φa)tξ−1(d − φa)/2

)
. (6)
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To find the prior density p(n, R, a) we need to make a number of assumptions:

(1) Both R and a depend on n through the number of their elements. On the other
hand, fluxes and positions are, in principle, independent. Thus, we can write

p(n, R, a) = p(R, a|n)p(n) = p(R|n)p(a|n)p(n). (7)

(2) A priori, it is reasonable to assume that all the possible combinations of locations
occur with the same probability. Therefore

p(R|n) = n!(N − n)!
N ! , (8)

since N !/(n!(N − n)!) is the number of possible distinct lists of n locations in a
discrete N -pixel map.

(3) It has been checked (see [3]) that the flux distribution can be modeled by a
Generalized Cauchy Distribution

p(a|n) ∝
n∏

α=1

[
1 +

(
aα

a0

)p]− γ
p

, (9)

with γ and p positive numbers. This distribution obviously assumes that the
fluxes of the different sources are mutually independent. In order to work with
non-dimensional magnitudes, we define xα = aα/a0; we also assume that we
will detect point sources above a minimal flux ai , that leads to the following
normalized distribution

p(x |n) = p

B

(
1

1+x p
i
; γ−1

p , 1
p

)
n∏

α=1

(
1 + x p

α

)− γ
p , (10)

where B is the incomplete beta function. The values of a0, p and γ , can be
determined by fitting this formula to the point source distribution given by the
De Zotti counts model (see [6]).

(4) We assume that the number of sources in a given sky patch follows a Poisson
distribution, with a known average number of sources λ

p(n) = λne−λ

n! . (11)

A detailed account of all these assumptions can be seen in [3].
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Finally, by putting together all these prior distributions and the likelihood, we can
write the negative log-posterior

L(n, R, x) = 1

2

(
xt Mx − 2et x

) − log(N − n)! − n log(λ)

−n log(p) + n log B

(
1

1 + x p
i

; γ − 1

p
,

1

p

)

+γ

p

n∑

α=1

log
(
1 + x p

α

)
, (12)

with M = a2
0φtξ−1φ and e = a0φ

tξ−1d. We assume that we know a0, p, xi , γ and
λ, so that the unknowns are: the normalized fluxes x , the number of point sources n
and the positions of the point sources through the matrix φ(R).

3 Computational approach

In [2] a suitable algorithm for a non-Bayesian method with a high degree of parallel-
ism that improves, from the computational point of view, the classical approaches for
detecting point sources in CMB maps was presented.

In [2] matrix M and vector e are obtained using Cholesky decomposition, without
calculating the inverse of ξ , given that ξ ∈ R

N×N is a symmetric positive definite
matrix. Besides, [2] shows that φ and ξ are symmetric Toeplitz-block Toeplitz matri-
ces with symmetric blocks (see [18]) and suggests, but does not exploit this property,
the possibility of using fast-algorithms (those which use the special structure of the
matrix to dramatically reduce the execution time).

Now, we put forward a generalization of the algorithm presented in [2] that can be
applied to the Bayesian method explained above. Also, this generalization explicitly
handles the structure of the matrices using the novel fast-algorithms described in [1]
and included in StructPack [17]. Thereby, we can deal with large matrices and solve
large systems in an efficient way.

The goal of this work is to find the number of sources and their fluxes and posi-
tions by maximizing the posterior probability distribution, or equivalently and more
simply, minimizing the negative log-posterior. In conclusion, we search the number
of sources, their fluxes and positions, rendered more probable by the data, taking also
into account the prior distributions.

Therefore, regarding the flux we minimize the negative log-posterior with respect
to x , by taking the derivative and equating to zero, we obtain

n∑

β=1

Mαβ xβ − eα + γ x p−1
α

1 + x p
α

= 0, α = 1, 2, . . . , n. (13)

In order to fix the positions, we assume that the point sources are in the local max-
ima of e (see [3]). To determine the number of sources, we sort these local peaks from
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top to bottom and solve (13) successively adding a new source. At the same time, we
calculate (12) and select the number of sources which produces its minimum value.

For the sake of simplicity, we redefine φ ≡ a0 φ and consider p = 1, this last
assumption is justified by the flux distribution. Besides, taking into account that the
thresholding process has been described in [2], in the following we will describe the
algorithm without explaining that process again.

The system of non-linear equations we want to solve is

n∑

β=1

Mαβ xβ − eα + γ

1 + xα

= 0, α = 1, 2, . . . , n, (14)

with M = φtξ−1φ and e = φtξ−1d. Therefore, the non-linear system can be expressed
in matrix form as

Mx = e − γ v, (15)

with v = (1/(1 + x1), 1/(1 + x2), . . . , 1/(1 + xn))t .
We consider that the matrices M , φ and ξ are of order N , while the vectors e and

d have N rows. As ξ ∈ R
N×N is a symmetric positive definite matrix, Cholesky

decomposition can be used to obtain a lower triangular matrix such that: ξ = L Lt [8].
Hence, vector e can be expressed as:

e = φtξ−1d = φt L−t L−1d = φt L−t c1 = φt c2 (16)

with c1 = L−1d and c2 = L−t c1.
Now, in order to construct the matrix M , we calculate

M = φtξ−1φ = φt (L Lt )−1φ = (L−1φ)t (L−1φ) = Zt Z , (17)

with Z = L−1φ.
Next, we compute the Q R decomposition of Z = Q R, with Q ∈ R

N×N , orthogo-
nal, and R ∈ R

N×n , upper triangular, and the matrix M can be expressed as

M = Zt Z = (Q R)t (Q R) = Rt Qt Q R = Rt R. (18)

In order to solve (15) we will use the classical Newton-Raphson method and
Armijo’s rule, obtaining a sequence

x (k+1) = x (k) − DF
(

x (k)
)−1

F
(

x (k)
)

, (19)

where

F(x) = Mx − e + γ v, DF(x) = M − γw, (20)
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with v = (1/(1 + x1), 1/(1 + x2), . . . , 1/(1 + xn))t and w = (1/(1 + x1)
2, 1/(1 +

x2)
2, . . . , 1/(1 + xn)2)t .
We will use the solution of the linear system Mx = e as our initial condition (x (0)).

Thus, vector x (0) can be computed by solving the triangular linear systems Rt y = φc2
and Rx = y. These ideas can be summarized in Algorithm 1.

Algorithm 1 Solution based on Cholesky decomposition
Require: φ, ξ , d, with φ, ξ ∈ R

N×N , d ∈ R
N×1 return x

1: Compute ξ : ξ = L ∗ Lt

2: Obtain e: L ∗ c1 = d, Lt ∗ c2 = c1, e = φt ∗ c2
3: Obtain M : Z = L−1 ∗ φ, Z = Q ∗ R, M = Rt ∗ R

4: Calculate F(x) = (Rt ∗ R) ∗ x − φt ∗ c2 + γ ∗ v; v =
(

1
1+x1

, 1
1+x2

, . . . , 1
1+xn

)t

5: Calculate DF(x) = (Rt ∗ R) − γ ∗ w; w =
(

1
(1+x1)2 , 1

(1+x2)2 , . . . , 1
(1+xn )2

)t

6: Solve non-linear system:
7: Calculate x(0): Rt ∗ y = φ ∗ c2, R ∗ x = y
8: Apply Newton-Raphson: x(k+1) = x(k) − DF(x(k))−1 ∗ F(x(k))

9: Find the number of point sources that minimizes the negative log-posterior

As mentioned, φ and ξ are symmetric Toeplitz-block Toeplitz matrices with sym-
metric blocks and, therefore, Cholesky decomposition can be replaced by the approach
proposed in [1]. For example, obtaining c2 in step 2 can be implemented as solve
ξc2 = d, by using Subroutine dtspg_sv from StructPack [17]. This affects to steps 1,
2 and 7, but also to the manner in which step 3 is computed because QR factorization
is not necessary. Therefore, we have one algorithm with two approaches: the former
based on Cholesky decomposition and the latter using StructPack.

The results shown in Sect. 4 demonstrate that the Bayesian method fixes the num-
ber of detected sources in a non-arbitrary way and that the new method detects more
sources than [2]. Furthermore, results show that considering the structure of the matrix
improves the execution time and reduces the memory consumption.

4 Simulations and results

The experimental results shown in this section were obtained on a board with two Intel®

Xeon® E5420 processors with 4 cores and 6 Mb. of cache memory each, thus resulting
in a total of 8 cores for the tests. We used Intel® Composer XE 12.1, Intel® MKL 10.3
and StructPack 1.2. When possible, the operations are carried out by all cores in par-
allel, by calling a threaded implementation of Intel® MKL 10.3 and StructPack 1.2;
or by using an OpenMP parallel directives.

We have tested our algorithm by applying it to simulated CMB maps with the char-
acteristics of the 30 GHz channel of the Planck satellite. Our maps include several
components: point sources, simulated according to the De Zotti model [6], a CMB
map generated by using the power spectrum which produces the best fit to the WMAP
5-year maps [12], and the instrumental noise. The CMB map and the point source map
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Fig. 1 Three simulations at 30 GHz. Left panel simulations of point sources. Right panel the same simu-
lations including the CMB plus noise

are added and convolved with the instrument beam. Then, the instrumental noise is
added to complete the final map.

Our simulations are flat patches of N = 128 × 128 pixels, so that the size of the
map is 14.66 × 14.66 square degrees. We have used our algorithm to determine the
number of sources, n, their positions and to estimate their fluxes. We compare
the results of the Bayesian method with the approach taken in [2] where a non-Bayesian
method was applied and the peaks above a given threshold were selected as sources.

In the following, we comment on the results obtained for five simulations (three
of them are shown in Fig. 1), that can be considered as representative of the general
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Fig. 2 Execution time with different number of cores and problem sizes. Left Cholesky. Right StructPack

performance of the method. By applying the algorithm put forward in Sect. 3, we are
able to detect 37 sources. We have considered peaks above 2σ in the map e, although
this particular threshold is not important, since the number of detected sources is given
by the minimization of the negative log-posterior (Eq. 12). Only two of these sources
are spurious, about 5 % of the total number, what agrees with the results found in [3].
A classical method, implemented by selecting the 5σ peaks of e, see [2], allows us to
detect just 26 sources, all of them real. Therefore, there is about a 35 % increase in the
number of real detections, at the cost of a small percentage of spurious sources. With
these simulations of 14.66 × 14.66 square degrees, we have shown that the Bayesian
method compares favorably with the classical approach, essentially a matched filter,
for large patches too.

The sources are found in their real positions but for a few cases in which there is
a displacement of one or two pixels and with small errors in their fluxes. The flux
estimation is carried out by solving Equation 14. The average of the absolute value
of the relative error in the flux estimation is 11 % in our simulations. If the fluxes
are determined by solving a linear system as in [2], the errors are similar. However,
note that all the sources above 0.45 Jy are detected with the Bayesian approach and
by contrast, all the sources above 0.75 Jy are detected with the matched filter and
a 5σ threshold. In conclusion, the source catalogue is more complete if it has been
elaborated with the Bayesian technique.

From the computational point of view, the behavior of the approaches presented in
Sect. 3 is shown in the next figures. As a result of time plotted in Fig. 2 it is easy to
conclude that the solution based on StructPack is better than Cholesky approximation.
For all sizes and number of cores StructPack’s time is always less than 50 % of Chole-
sky’s time. Nevertheless, both times are very good times when compared with those
obtained with other solutions. For example, a problem of size 215 × 215 is solved in
less than a quarter of an hour using only 4 cores (less if 8 cores are used or we have
an Intel® i7 or higher processor).

Additionally, memory consumptions are also lower with StructPack. Thus, if the
problem size is 215 ×215 StructPack uses about 12 GB of RAM, 4 GB less than Chole-
sky. In general, StructPack needs 25 % less memory than the Cholesky solution.
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Finally, both solutions have a good efficiency (or speed-up) as seen in Fig. 3,
which results in a reasonable scalability. That is, big problems (when the problem size
increases) can be tackled with a reasonable increase in computational power.

5 Concluding remarks

We have put forward a new algorithm that can be used in a Bayesian approach to detect
point sources in CMB maps. The advantages of the algorithm are the following ones:

(1) The number of detected sources is higher than in previous methods, with a low
percentage of spurious detections. The minimization of the negative log-poster-
ior allows the determination of the number of sources in a non-ambiguous way,
without having to resort to fixing arbitrary thresholds.

(2) We can construct more complete source catalogs, what yields important infor-
mation from the astrophysical and cosmological points of view.

(3) The algorithm can be extended to larger patches, since it handles large matrices
and systems of non-linear equations in a very efficient way.

(4) We propose two software approaches. One of them, the version based on the
StructPack package, is fast, scalable and needs little memory.

(5) Big problems, with large patches, can be now tackled at high resolution.
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